Ligand Binding and Hydration in Protein Misfolding: Insights from Studies of Prion and p53 Tumor Suppressor Proteins†

نویسندگان

  • Jerson L. Silva
  • Tuane C. R. G. Vieira
  • Mariana P. B. Gomes
  • Ana Paula Ano Bom
  • Luis Mauricio T. R. Lima
  • Monica S. Freitas
  • Daniella Ishimaru
  • Yraima Cordeiro
  • Debora Foguel
چکیده

Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington's disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen's paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP-nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding-misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein

p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...

متن کامل

شناسایی جهش در اگزون‌های پنج و شش ژن P53 در زنان مبتلا به سرطان پستان آذربایجان شرقی

Background and Objectives: Breast cancer (BC) is the most common invasive malignancy affecting women worldwide. The tumor-suppressor P53 gene (P53) is frequently mutated in breast tumors. To use P53 as a target for therapy, it is important to accurately assess p53 mutation status in tumor samples. Materials and Methods: A total of 102 tumor samples were collected from breast cancer patients ref...

متن کامل

اثر هشت هفته تمرینات ترکیبی بر توان هوازی و سطح سرمی‌پروتئین سرکوب‌گر تومور P53 در بیماران مبتلا به سرطان پروستات: یک کارآزمایی بالینی

Background and Objectives: Physical activity plays a useful role in maintaining and improving the quality of life of men suffering from prostate cancer. The presence of tumor suppressor proteins including P53 is one of the regulatory mechanisms in controlling the progression of the disease. The purpose of this study was to investigate the effect of eight-week concurrent training on aerobic capa...

متن کامل

Immunohistochemical Evaluation of Human p53 Tumor Suppressor Protein Content in Ductal Carcinoma in Situ of the Breast

The focus of this study was to determine if early detection of mutant p53 accumulation may be an early indicator of tumor aggressiveness and transformation to invasive breast cancer. For this purpose, the p53 content of 100 human breast biopsies classified as ductal carcinoma (DCIS), was evaluated by immunohistochemical method. All specimens were microscopically classified into histologic types...

متن کامل

تعیین جهش در اگزون 8 ژن p53 در بیماران مبتلا به تومور مغزی از نوع آستروسایتوما

Background: Most studies have shown that there are association between the development and malignancy of brain tumors and tumor suppressor genes and oncogenes. The aim of this project was to investigate the P53 gene mutations in exon 8 in patients with astrocytoma type’s brain tumor. Methods: In this present survey, The DNA isolation from 30 samples of brain tissue was done by phenol-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2010